

• UN-QSF40-0085MM01C

40Gbps QSFP+ SR4 850nm 100m MPO/MTP Transceiver

Product Feature

- 4 independent full-duplex channels
- Up to 10.3125Gb/s data rate per channel
- QSFP+ MSA compliant
- Up to 100m OM4 MMF transmission
- Maximum power consumption 1.5W
- MTP/MPO optical connector
- Compliant to IEEE 802.3bm 40GBASE-SR4
- RoHS-6 compliant
- Single 3.3V power supply
- Operating case temperature
 Commercial: 0°C to +70°C

Applications

- Rack to Rack
- Data Center
- Infiniband QDR, DDR and SDR
- 40G Ethernet

Product Description

This product is a parallel 40Gb/s Quad Small Form-factor Pluggable (QSFP+) optical module. It provides increased port density and total system cost savings. The QSFP+ full-duplex optical module offers 4 independent transmit and receive channels, each capable of 10.3125Gb/s operation for an aggregate data rate of 40Gb/s on 100 meters of OM4 multi-mode fiber.

An optical fiber ribbon cable with an MTP/MPO connector can be plugged into the QSFP+ module receptacle. Proper alignment is ensured by the guide pins inside the receptacle. The cable usually cannot be twisted for proper channel to channel alignment. Electrical connection is achieved through an MSA-compliant 38-pin edge type connector.

The module operates by a single +3.3V power supply. LVCMOS/LVTTL global control signals, such as Module Present, Reset, Interrupt and Low Power Mode, are available with the modules. A 2-wire serial interface is available to send and receive more complex control signals, and to receive digital diagnostic information. Individual channels can be addressed and unused channels can be shut down for maximum design flexibility.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP+ Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference. The module offers very high functionality and feature integration, accessible via a two-wire serial interface.

Product Selection

Part Number	Operating Case temperature	DDMI
UN-QSF40-0085MM01C	Commercial(0~70°C)	Yes

Pin Descriptions

Pin	Symbol	Name/Description					
1	GND	Transmitter Ground (Common with Receiver Ground)	1				
2	Tx2n	Transmitter Inverted Data Input					
3	Tx2p	Transmitter Non-Inverted Data output					
4	GND	Transmitter Ground (Common with Receiver Ground)	1				
5	Tx4n	Transmitter Inverted Data Input					
6	Tx4p	Transmitter Non-Inverted Data output					
7	GND	Transmitter Ground (Common with Receiver Ground)	1				
8	ModSelL	Module Select					
9	ResetL	Module Reset					
10	VccRx	3.3V Power Supply Receiver	2				
11	SCL	2-Wire serial Interface Clock					
12	SDA	2-Wire serial Interface Data					
13	GND	Transmitter Ground (Common with Receiver Ground)					
14	Rx3p	Receiver Non-Inverted Data Output					
15	Rx3n	Receiver Inverted Data Output					
16	GND	Transmitter Ground (Common with Receiver Ground)	1				
17	Rx1p	Receiver Non-Inverted Data Output					
18	Rx1n	Receiver Inverted Data Output					
19	GND	Transmitter Ground (Common with Receiver Ground)	1				
20	GND	Transmitter Ground (Common with Receiver Ground)	1				
21	Rx2n	Receiver Inverted Data Output					
22	Rx2p	Receiver Non-Inverted Data Output					
23	GND	Transmitter Ground (Common with Receiver Ground)	1				
24	Rx4n	Receiver Inverted Data Output	1				
25	Rx4p	Receiver Non-Inverted Data Output					
26	GND	Transmitter Ground (Common with Receiver Ground)	1				
27	ModPrsl	Module Present					
28	GND	Transmitter Ground (Common with Receiver Ground)					
29	Tx2n	Transmitter Inverted Data Input	2				
30	Tx2p	Transmitter Non-Inverted Data output	2				
31	GND	Transmitter Ground (Common with Receiver Ground)					
32	Tx4n	Transmitter Inverted Data Input	1				
33	Tx4p	Transmitter Non-Inverted Data output					
34	GND	Transmitter Ground (Common with Receiver Ground)					
35	ModSelL	Module Select	1				
36	ResetL	Module Reset					
37	VccRx	3.3V Power Supply Receiver					
38	SCL	2-Wire serial Interface Clock	1				

Notes:

- 1. GND is the symbol for signal and supply (power) common for QSFP28 modules. All are common within the QSFP28 module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
- 2. VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown in Figure 4 below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP28 transceiver module in any combination. The connector pins are each rated for a maximum current of 1000mA.

38	GND					
37	TX1n				GND	1
36	TX1n				TX2n	2
35	GND				TX2p	3
34	TX3n		_		GND	4
22	TY2n				TX4n	5
20	CND		_		TX4p	6
32	GND				GND	7
31	LPMode		^o		ModSelL	8
30	VCC1	14	17	1	ResetL	9
29	VCCTX	2	<u>u</u>		VccRx	10
28	IntL		m		SCI	11
27	ModPrsL	3	8	-	SDA	12
26	GND		l de l		GND	12
25	RX4p	12 million - 12			DY2n	10
24	RX4n			1	клар	14
23	GND				RX3n	15
22	RX2p				GND	16
21	RX2n				RX1p	17
20	GND				RX1n	18
20	OND				GND	19

Top Side

Bottom Side

Pin-out of Connector Block on Host Board

Transceiver Block Diagram

Transceiver Block Diagram

Optical Interface Lanes and Assignment

The orientation of the multi-mode fiber facets of the optical connector. Table 1 provides the lane assignment.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Storage Temperature	Ts	-40		+85	°C	
Relative Humidity	RH	0		95	%	
Power Supply Voltage	VCC	-0.5		+3.6	v	
Damage Threshold, each Lane	TH _d	3.4			dBm	

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Case Operating Temperature	Тс	0		70	°C	
Power Supply Voltage	V _{cc}	3.13	3.3	3.47	v	
Control Input Voltage High	V _{cc}	2		300	V	
Control Input Voltage Low	V _{cc}	0		0.8	v	
Data Rate, each Lane	BR		10.3	11.3	Gbps	
Link Distance (OM3 MMF)	Lmax			70	М	
Link Distance (OM4 MMF)	Lmax			100	М	

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note	
Transmitter							
Tx Disable Input-High	VDISH	2		Vcc+0.3	v		
Tx Disable Input-Low	VDISL	0		0.8	v		
Tx Fault Input-High	VTxFH	2		Vcc+0.3	v		
Tx Fault Input-Low	VTxFL	0		0.8	v		
Receiver							
LOSS -High	VLOSH	2		Vcc+0.3	v		
LOSS -Low	Vlosl	0		0.8	v		

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
		Transmit	ter			
Center Wavelength	λς	840	850	860	nm	
RMS Spectral Width	۵λ			0.6	nm	
Average Launch Power, each Lane	P _{AVG}	-8.4		2.4	dBm	
Optical Modulation Amplitude (OMA), each Lane	Рома	-6.4		3.0	dBm	1
Difference in Launch Power between any Two Lanes (OMA)	Ptx,diff			4.0	dB	
Launch Power in OMA minus TDEC, each Lanes		-7.3			dBm	
Transmitter and Dispersion Eye Closure (TDEC), each Lane				4.3	dB	
Extinction Ratio	ER	3.5			dB	
Optical Return Loss Tolerance	TOL			12	dB	
Transmitter OFF Output Power	Poff			-30	dBm	
		Receive	er			
Center Wavelength	λ_{c}	840	850	860	nm	
Damage Threshold, each Lane	TH_{d}	3.4			dB	2
Average Receive Power, each Lane		-10.3		2.4	dBm	
eceiver Reflectance	R _R			-12	dB	
Receiver Sensitivity (OMA), each	SEN			-9.2	dBm	
Stressed Receiver Sensitivity (OMA), each Lane				-5.2	dBm	3
LOS De-assert	LOSD			-12	dBm	
LOS Assert	LOSA	-30			dBm	2
LOS Hysteresis		0.5		6	dB	

Notes:

- 1. Even if the TDP<0.9 dB, the OMA min must exceed the minimum value specified here.
- 2. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- 3. Measured with conformance test signal at receiver input for $BER=1x10^{-12}$.

EEPROM Information

EEPROM memory map specific data field description is as below:

0~2	ID and Status	(3 Bytes)					
3~21	Interrupt Flags	(19 Bytes)					
22~33	(12 Bytes)						
34~81	34~81 Channel Monitors						
82~85	Reserved	(4 Bytes)					
86~98	Control	(13 Bytes)					
99	Reserved	(1 Bytes)					
100~104	Hardware Interrupt Pin Masks	(5 Bytes)					
105~ <mark>1</mark> 06	Vendor Specific	(2 Bytes)					
107	Reserved	(1 Bytes)					
108~110	Free Side Device Properties	(3 Bytes)					
111~112	Assigned for use by PCI Express	(2 Bytes)					
113	Free Side Device Properties	(1 Bytes)					
114~118	Reserved	(5 Bytes)					
119~122	Password Change Entry Area	(4 Bytes)					
123~126	Password Entry Area (Optional)	(4 Bytes)					
127	Page Select Byte	(1 Bytes)					

4	K	Z	
	Optional	Optional	Optional
Upper Page 00h	Page 01h	Page 02h	Page 03h
128 Identifier	128 CC_APPS	128-255 User EEPROM Data	128-175 Free Side Device Thresholds 129-191 Base ID Fields 129 AST Table Length
129-191 Base ID Fields	129 AST Table Length (TL)		176-223 Channel Thresholds
192-223 Extended ID	130-131 Application Code Entry O		224 Tx EQ & Rx Emphasis Magnitude ID
224-255 Vendor Specific ID	132-133 Application Code Entry 1		225 RX output amplitude indicators
	134-253 other entries		226-241 Channel Controls
	254-255 Application Code Entry TL		242-251 Channel Monitor Masks
			252-255 Reserved

Digital Diagnostic Monitoring Interface

Five transceiver parameter values are monitored. The following table defines the monitored parameter's accuracy.

Parameter	Range	Accuracy	Calibration
Temperature	0 to +70°C (C)	±3°C	Internal
Voltage	3.13 to 3.47V	±3%	Internal
Bias Current	0 to 100mA	±10%	Internal
TX Power	-9 to +3dBm	±3dBm	Internal
RX Power	-11 to +3dBm	±3dBm	Internal

Recommend Circuit Schematic

QSFP28 Module

Mechanical Specifications

Revision History

Revision	Initiated	Reviewed	Approved	DCN	Release Date
Version1.0	Zhangchengxing	Pengyanhui	Liubin	New Released.	July 28, 2017
Version1.1	Liusong	Pengyanhui	Liubin	Updated document structure	Dec 10,2020